
http://fun3d.larc.nasa.gov

Session 12:
Overset and Rotorcraft Simulations

Bob Biedron and Beth Lee-Rausch

FUN3D Training Workshop
April 27-29, 2010 1

http://fun3d.larc.nasa.gov

Learning Goals
•  What this will teach you

–  Static and dynamic simulations using overset meshes (general)
–  Overview of setup for overset, articulated-blade rotorcraft simulations

•  Rigid Blades
•  Elastic Blades / Loose Coupling to Rotorcraft Comprehensive Codes

–  Overview of actuator-disc models for rotorcraft (not overset)
•  What you will not learn

–  Rotorcraft Comprehensive Code set up and operation
–  SUGGAR++ operation (Ralph Noack will cover tomorrow)

•  What should you already know
–  Basic time-accurate and dynamic-mesh solver operation and control
–  Rudimentary rotorcraft aeromechanics (collective, cyclic…)

FUN3D Training Workshop
April 27-29, 2010 2

http://fun3d.larc.nasa.gov

Part I – Overset Simulations

FUN3D Training Workshop
April 27-29, 2010 3

http://fun3d.larc.nasa.gov

Setting
•  Background

–  Many (most?) moving-body problems of interest involve large
relative motion - rotorcraft, store separation are prime examples
•  Deforming meshes can accommodate only limited relative motion

before mesh degenerates
•  Single rigid mesh can accommodate only one body, and not

relative motion
•  Use overset grids to overcome these limitations - not to overcome

complex geometry per se – that’s why we use unstructured grids!
•  Compatibility

–  FUN3D requires both DiRTlib and SUGGAR++ codes from PSU
–  Grid formats: VGRID, AFLR3, FieldView (FV)

•  Status
–  AFLR3 and FieldView meshes not exercised much to date
–  Bodies in contact / emerging bodies - no near-term plans

FUN3D Training Workshop
April 27-29, 2010 4

http://fun3d.larc.nasa.gov

Overset Mesh Simulations – General (1/3)
•  Configuring FUN3D (only as a reminder, except to note compile scripts)

–  Compile / install DiRTlib and SUGGAR; available scripts (download from
FUN3D website) make it easy

–  When configuring FUN3D, use --with-dirtlib=/path/to/
dirtlib and --with-suggar=/path/to/suggar

–  FUN3D will expect to find the following libraries in those locations:
•  libdirt.a, libdirt_mpich.a and libp3d.a (these may be

soft links to the actual serial and mpi builds of DiRTlib)
•  libsuggar.a and libsuggar_mpi.a (may be soft links)
•  Scripts do this automatically – they put links to all archives in one

spot, so /path/to/dirtlib = /path/to/suggar
•  Grids (remember z is “up” for FUN3D)

–  A composite overset grid is comprised of 2 or more component grids -
independently generated - but with similar cell sizes in the fringe areas

–  SUGGAR++ is used to create the composite mesh
FUN3D Training Workshop

April 27-29, 2010 5

http://fun3d.larc.nasa.gov

Overset Mesh Simulations – General (2/3)
•  Boundary conditions:

–  SUGGAR++ needs BC info for each component grid - set either via the
SUGGAR++ input XML file OR an auxiliary file for each component grid;
SUGGAR++ will output this auxiliary file for the composite mesh

–  FUN3D also needs BC info for the composite grid; depending on grid
type, file names / content may differ slightly between FUN3D / SUGGAR

–  “ext” is the FUN3D grid extension, e.g.: grid.fvgrid_fmt, grid.r8.ugrid
–  AFLR3 / FV grids: suggar_mapbc file has extra column; FUN3D ignores

3 ! number of boundaries (patches)
1 5000 Box farfield ! patch_index, fun3d_bc, family_name, suggar_bc

2 4000 Wing_Surf solid
3 -1 Wing_FarFld overlap

FUN3D Training Workshop
April 27-29, 2010 6

VGRID grid FV grid AFLR3 grid

FUN3D grid.mapbc
(standard VGRID file)

grid.mapbc
(not same as VGRID)

grid.mapbc
(not same as VGRID)

SUGGAR++ grid.mapbc
(standard VGRID file)

grid.ext.suggar_mapbc
(not same as VGRID)

grid.ext.suggar_mapbc
(not same as VGRID)

http://fun3d.larc.nasa.gov

Overset Mesh Simulations – General (2/3)
•  Boundary conditions (cont):

–  set BC type to -1 in component-grid “mapbc” files for boundaries that
are set via interpolation from another mesh

FUN3D Training Workshop
April 27-29, 2010 7

Grid Courtesy Eric Lynch, GA Tech

http://fun3d.larc.nasa.gov

Overset Mesh Simulations – General (3/3)
•  Create an XML input file for SUGGAR++

–  Ralph Noack will provide all the details tomorrow; however must show
some XML here to show certain FUN3D-specific points

–  Set the name for the <composite_grid> and
<domain_connectivity> files to the name of your FUN3D project

–  Can mix and match component grid types (VGRID, FV, AFLR) and
select one of the types for the composite grid - but recall VGRID only
supports tetrahedra

•  Run SUGGAR++ and make sure it all works as expected. You should
now have a [project].dci file; this domain connectivity information
file contains all necessary overset data for solver interpolation between
the nonmoving component meshes

•  Good idea to use the “gviz” tool from PSU to view composite mesh
assembly, holes points, fringe points, etc.

FUN3D Training Workshop
April 27-29, 2010 8

http://fun3d.larc.nasa.gov

Overset Mesh Simulations – Static (1/2)
•  Running FUN3D with static overset meshes:

–  Add --overset to any other CLOs you may have and run as usual
–  In screen output, should see:

Reading DCI data: ([project].dci)

Loading of dci file header took Wall …

Opening filename: ([project].g2l) (repeated nproc times !)

Loading of dci file took Wall Clock time = 5.324230 seconds

Using DiRTlib version 1.40 for overset capability

DiRTlib developed by Ralph Noack, Penn State University Applied Research
Laboratory

–  Followed by the usual FUN3D output, ending with Done.
–  If you request visualization output data for an overset case, “iblank”

data will automatically be output to allow blanking of the hole / out
points for correct visualization of the solution / grid in Tecplot

FUN3D Training Workshop
April 27-29, 2010 9

http://fun3d.larc.nasa.gov

Overset Mesh Simulations – Static (2/2)

FUN3D Training Workshop
April 27-29, 2010 10

without iblank with iblank

http://fun3d.larc.nasa.gov

Overset Mesh Simulations – Dynamic (1/4)
•  SUGGAR++ setup

–  Starting with a static-grid XML file:

•  Add <dynamic/> to <body> elements that are to move, e.g.
 <body name="wing">
 <volume_grid name="wing" style="vgrid_set" filename="wing"/>
 </body>
 <body name="store">
 <dynamic/>
 <volume_grid name="store" style="vgrid_set" filename="store"/>
 </body>

•  Note: better to use a self-terminated <dynamic/> rather than
<dynamic> … </dynamic> since if there are any <transform>
elements in between, SUGGAR++ won’t apply them unless explicitly
told to

–  Use SUGGAR++ to generate the initial (t = 0) composite grid; let’s
assume you called the XML file Input.xml_0

FUN3D Training Workshop
April 27-29, 2010 11

http://fun3d.larc.nasa.gov

Overset Mesh Simulations – Dynamic (2/4)
•  In the FUN3D moving_body.input file

–  Define the bodies and specify motion as usual; boundary numbers
correspond to those in the composite mesh mapbc file, accounting for
any boundary lumping that may be selected at run time

–  use the component body names from the Input.xml_0 file
–  Add name of the xml file used to generate the t = 0 composite mesh:

&composite_overset_mesh
 input_xml_file = 'Input.xml_0'
/

•  Running FUN3D
–  Use CLOs --overset --moving_grid --dci_on_the_fly
–  The last tells FUN3D to call libSUGGAR++ routines to compute new

overset data when the grids are moved; if this CLO is not present,
solver will try to read the corresponding dci file from disk

FUN3D Training Workshop
April 27-29, 2010 12

http://fun3d.larc.nasa.gov

Overset Mesh Simulations – Dynamic (3/4)
•  Running FUN3D (cont)

–  Note: for dynamic meshes, the component grids (and any
“suggar_mapbc” files) must be available (can be soft linked) in the
FUN3D run directory, in addition to the t = 0 composite-grid files

–  When using --dci_on_the_fly, must specify one additional
processor for SUGGAR++ (in future, will be able to use more)

•  The first processor gets assigned the SUGGAR++ task
•  This processor must have enough memory for entire overset problem

(same as needed for SUGGAR++ alone)
–  Other overset-grid CLOs
 --dci_period N periodic motion over N steps (default 0)
 --dci_freq N compute dci data only every Nth step (1)
 --reuse_existing_dci use existing files if present, even with

 --dci_on_the_fly (.F.)
 --grid_motion_and_dci_only create dci files; no flow solve (.F.)

FUN3D Training Workshop
April 27-29, 2010 13

http://fun3d.larc.nasa.gov

Overset Mesh Simulations – Dynamic (4/4)
•  As always, can use animation to verify; these were done ex post facto,

but GVIZ has motion replay options too

FUN3D Training Workshop
April 27-29, 2010 14

http://fun3d.larc.nasa.gov

Part II – Rotorcraft Simulations
Trained Professionals. Closed Course. Do Not Attempt At Home.

FUN3D Training Workshop
April 27-29, 2010 15

http://fun3d.larc.nasa.gov

Setting
•  Background

–  FUN3D can model a rotor with varying levels of fidelity/complexity
•  As an actuator disk - when only the overall rotor influence is needed
•  As rotating, articulated-blade system (cyclic pitch, flap, lead-lag),

with or without aeroelastic effects - if detailed airloads are needed
–  Trim and aeroelastic effects require coupling with a rotorcraft

“comprehensive” code
•  As a steady-state problem for rigid, isolated, fixed-pitch blades in a

rotating noninertial frame (not covered here)
•  Compatibility

–  Coupling to the CAMRAD comprehensive code; other codes usable
with appropriate middleware (not supplied)

•  Status
–  Coded for multiple rotors, but largely untested
–  Only “loose” (periodic) coupling incorporated to date
–  Still an emerging capability; expect changes

FUN3D Training Workshop
April 27-29, 2010 16

http://fun3d.larc.nasa.gov

Time-Averaged Actuator-Disk Simulations (1/2)
•  Actuator disk method utilizes momentum/energy source terms to

represent the influence of the disk (pressure jump)
– Original implementation by Dave O’Brien (GIT Ph.D. Thesis)
– HI-ARMS implementation (SMEMRD) by Dave O’Brien ARMDEC

adds trim and ability to use C81 airfoil tables (Not covered in training)
•  Simplifies grid generation – disk is embedded in computational grid (note

some refinement in the vicinity of actuator surface needed for accuracy
- but, Dave O’Brien recommends that delta-s of grid > delta-s disk)

•  Any number of actuator disks can be modeled
•  Different disk loading models available

–  RotorType = 1 actuator disk
•  LoadType = 1 constant (specified thrust coefficient CT)
•  LoadType = 2 linearly increasing to blade tip (specified CT)
•  LoadType = 3 blade element based (computed CT)

–  RotorType = 2 actuator blades (time-accurate) Not Functional

FUN3D Training Workshop
April 27-29, 2010 17

http://fun3d.larc.nasa.gov

Time-Averaged Actuator-Disk Simulations (2/2)
•  Actuator disk implementation runs orthogonal to the standard steady-

state flow solver process (compressible and incompressible)
– Standard input grid formats for the volume grids
– Standard solver input deck (fun3d.nml)
– Standard output is available (project.forces,
project_hist.tec, project_tec_boundary.plt)

– Want to see similar solution convergence as for a standard steady-
state case

•  Actuator disk model is activated in the command line by
mpirun nodet_mpi -–rotor

– Rotor input deck file (rotor.input) is required in the local directory
– rotor.input contains disk geometry and loading specifications
– The disk geometry and loading are output in plot3d format in files
source_grid_iteration#.p3d and
source_data_iteration#.p3d

FUN3D Training Workshop
April 27-29, 2010 18

http://fun3d.larc.nasa.gov

Incompressible Robin/Actuator Disk

FUN3D Training Workshop
April 27-29, 2010 19

Advance Ratio = 0.051 (Vinf/Vtip)
Thrust coefficient CT = 0.0064
Angle of attack = 0 deg
Shaft angle = 0deg

http://fun3d.larc.nasa.gov

 rotor.input File
•  Constant/linear loading needs only a subset of the data in the file

 # Rotors Uinf/Uref Write Soln Force Ref Moment Ref ! Below we set Uref = Uinf
 1 1.000 1500 0.001117 0.001297 ! Adv Ratio = Uinf/Utip
=== Main Rotor === ! So here Utip/Uref = 1/AR
Rotor Type Load Type # Radial # Normal Tip Weight
 1 2 50 180 0.0
 X0_rotor Y0_rotor Z0_rotor phi1 phi2 phi3
 0.696 0.0 0.322 0.00 -0.0 0.00
 Utip/Uref ThrustCoff PowerCoff psi0 PitchHing/R DirRot
 19.61 0.0064 -1.00 0.0 0.0 0
 # Blades TipRadius RootRadius BladeChord FlapHinge/R LagHinge/R
 4 0.861 0.207 0.066 0.051 0.051
 LiftSlope alpha, L=0 cd0 cd1 cd2
 0.0 0.00 0.002 0.00 0.00
 CL_max CL_min CD_max CD_min Swirl
 0.00 0.00 0.00 0.00 0
 Theta0 ThetaTwist Theta1s Theta1c Pitch-Flap
 0.0 0.00 0.0 0.0 0.00
 # FlapHar Beta0 Beta1s Beta1c
 0 0.0 0.0 0.0
 Beta2s Beta2c Beta3s Beta3c
 0.0 0.0 0.0 0.0
 # LagHar Delta0 Delta1s Delta1c
 0 0.0 0.0 0.0
 Delta2s Delta2c Delta3s Delta3c
 0.0 0.0 0.0 0.0

•  Note Vref=Vtip is bad choice for incompressible flow - suggest using rotor
induced velocity

FUN3D Training Workshop
April 27-29, 2010 20

Key:
Required for constant loading
Required for blade element
Not implemented
(all must have a values)

http://fun3d.larc.nasa.gov

Incompressible Robin/Actuator Disk

FUN3D Training Workshop
April 27-29, 2010 21

http://fun3d.larc.nasa.gov

 Things To Look For In Screen Output
•  If Force_ref = 1/(Vtip/Vref)2/(πR2) and

Moment_ref= 1/(Vtip/Vref)2/(πR3)

 Rotor force summary in standard output:
Rotor Force Summary:
Rotor 1 Grid Forces:Fx= 0.0000E+00Fy= 0.0000E+00Fz= 6.4008E-03
Rotor 1 Grid Moments:Mx= -1.5898E-17My= 8.6398E-18Mz= 0.0000E+00
Rotor 1 Shaft Forces:H = 0.0000E+00Y = 0.0000E+00T = 6.4008E-03
Rotor 1 Shaft Moments:Mh= -1.5898E-17My= 8.6398E-18 Q= 0.0000E+00

•  Note that the force coefficients in project.forces and project_hist.tec are flow
boundary forces only (no actuator disk forces) which have been normalized
in the fixed wing fashion

FUN3D Training Workshop
April 27-29, 2010 22

http://fun3d.larc.nasa.gov

Articulated-Blade Simulations
•  Relies on the use of overset grids; blades may be rigid or elastic
•  Elastic-blade cases (or trimmed rigid-blade cases) must be coupled to a

rotorcraft Computational Structural Dynamics (CSD, aka comprehensive)
code such as CAMRAD, DYMORE, RCAS…

– The CSD code provides trim solution in addition to blade deformations
– The interface to the CSD code is through standard OVERFLOW
rotor_N.onerev.txt and motion.txt type files

– Interface codes (middleware) for CAMRAD are maintained and
distributed by Doug Boyd, NASA Langley (d.d.boyd@nasa.gov)

– FUN3D has several postprocessing utility codes tailored to CAMRAD
•  A coupled elastic-blade simulation is about as complicated as it gets with

the FUN3D flow solver
– There are many small details that must be done correctly; we don’t

have time to cover them all here
– Novice users of FUN3D will want to start with simpler problems!

FUN3D Training Workshop
April 27-29, 2010 23

http://fun3d.larc.nasa.gov

CFD/CSD – Loose (Periodic) Coupling

FUN3D Training Workshop
April 27-29, 2010 24

Coupling Process CSD -> CFD

CFD -> CSD

CFD/CSD loose coupling implemented via shell
script with error checking

motion.txt and rotor_onerev.txt files common to
FUN3D and OVERFLOW

http://fun3d.larc.nasa.gov

dci_gen Preprocessor (1/8)
•  A rudimentary code to simplify rotorcraft setup (/utils/Rotocraft/dci_gen)

–  Uses libSUGGAR++ routines
–  Takes a single blade grid and a single fuselage / background grid

(extending to far field) and assembles them into an N-bladed rotorcraft
–  Creates the SUGGAR++ XML file (Input.xml_0) needed by FUN3D
–  Generates, using libSUGGAR++ calls, the initial (t = 0) dci file and

composite grid needed by FUN3D
–  Generates the composite-grid “mapbc” files needed by FUN3D
–  Component grids must be oriented as shown on following slide

•  Blade must have any “as-built” twist incorporated
•  If grids do not initially meet the orientation criteria, can use

SUGGAR++ to rotate them before using dci_gen
•  Don’t have to use dci_gen; could create the XML file by hand and run

SUGGAR++; a more complex setup could start with dci_gen, hand edit
the resulting XML file, then follow with SUGGAR++

FUN3D Training Workshop
April 27-29, 2010 25

http://fun3d.larc.nasa.gov

dci_gen Preprocessor (2/8)

HART II Component Grids

FUN3D Training Workshop
April 27-29, 2010 26

http://fun3d.larc.nasa.gov

dci_gen Preprocessor (3/8)
HART II Composite Grid

FUN3D Training Workshop
April 27-29, 2010 27

http://fun3d.larc.nasa.gov

dci_gen Preprocessor (4/8)
•  Requires the rotor.input file (also required by flow solver - more later)

•  Creates the initial composite mesh with the blades at zero collective, zero
cyclic, zero flap; however, the rotor is tilted according to phi2 (shaft tilt);
resulting mesh and dci file can then be used for multiple flight conditions

•  FUN3D will “pop” the blades into the correct t = 0 position at the start of
simulation, based either on the collective, cyclic, etc. data in
rotor.input (rigid) or on the data in the “motion.txt” file (elastic)

•  For rigid, untrimmed blades, rotor.input gives a complete definition
of the blade motion - dci_gen can create dci data for all blade positions
a priori; this can be done in “embarassingly parallel” manner, faster than
can be done from within the flow solver

•  dci_gen will prompt the user for input; example next slide

•  dci_gen will read (if present) a file called manual_hole_commands
that can be used to add problem-specific additional XML commands to
aid the computation of overset connectivity data

FUN3D Training Workshop
April 27-29, 2010 28

http://fun3d.larc.nasa.gov

dci_gen Preprocessor (5/8)
•  Usage: ./dci_gen first echos rotor.input, then prompts for input:

Enter a project name: (e.g. robin)
uh60_alw_isolated_c2_ft
Enter the name of the fuselage grid: (e.g. robin_fuse)
empty_box_coarse2_uh60_ft
Enter the type of fuselage/background grid: vgrid, aflr3, or fvuns
aflr3
Is this grid formatted (enter f) or unformatted (enter u)
f ! This question NOT asked if type = vgrid
Is this grid single precision (enter s)or double precision (enter d)
d ! This question NOT asked if type = vgrid
For multiple rotors, the first rotor should be the main rotor
Additional rotors spin with gear ratios relative to rotor 1
Enter the name of the blade grid for rotor 1: (e.g. robin_blade)
uh60_alw_blade_tab_c2_t2_ft
Enter the type of blade grid: vgrid, aflr3, or fvuns
aflr3
Is this grid formatted (enter f) or unformatted (enter u)
f ! This question NOT asked if type = vgrid
Is this grid single precision (enter s)or double precision (enter d)
d ! This question NOT asked if type = vgrid
Enter initial psi, final psi, and psi increment values for the first rotor
0.0 0.0 1.0 ! Just initial azimuth - elastic blades

FUN3D Training Workshop
April 27-29, 2010 29

http://fun3d.larc.nasa.gov

dci_gen Preprocessor (6/8)
•  After data summary and echo of XML commands, should see:

*** Computing DCI data
*** Finished DCI file: uh60_alw_isolated_c2_ft.dci

psi(rotor 1) = 0.0000

 Orphan Info:
 Found 0 orphans because of hole cut failures
 Sort added 0 orphans because of poor quality donors

 SUGGAR++ Resource Requirements:
 Wall Clock Time 488.004623 seconds
 Memory Usage 3180 Mbytes

** Finished Creating DCI Files **

FUN3D Training Workshop
April 27-29, 2010 30

http://fun3d.larc.nasa.gov

dci_gen Preprocessor (7/8) skip - FYI
•  In some cases we may supply a manual_hole_commands file, with, for

example, the entries shown below; without this file, the red elements
below would not have appeared in resulting Input.xml_0 file shown on
the next slide, and the overlap connectivity might suffer:

<global>
 <thin_cut set_to="out"/>
 <donor_quality value="0.9" />
 <minimize_overlap keep_inner_fringe="yes"/>
</global>
 <volume_grid name="hartii_rotor_test">
 <skip_overlap_opt set_dsf_value="0.0"/>
 </volume_grid>

•  Alternatively to manual_hole_commands, run dci_gen, modify
resulting Input.xml_0, and run SUGGAR++ “by hand”

FUN3D Training Workshop
April 27-29, 2010 31

http://fun3d.larc.nasa.gov

dci_gen Preprocessor (8/8) skip - FYI
•  The resulting Input.xml_0 file is (greatly edited to fit) :

<global>
 <thin_cut set_to="out"/>
 <donor_quality value="0.9" />
 <minimize_overlap keep_inner_fringe="yes"/>
 <output>
 <composite_grid style="unsorted_vgrid_set" filename="hartii_test"/>
 <domain_connectivity style="unformatted_gen_drt_pairs” … />
 </output>
 <body name="complete">
 <body name="rotor1_blade1">
 <dynamic/>
 <transform>
 …
 </transform>
 <volume_grid name="hartii_rotor_test” … >
 <skip_overlap_opt set_dsf_value="0.0"/>
 </volume_grid>
 </body>
 <body name="fuselage">
 <volume_grid name="hartii_box_test” …">
 </volume_grid>
 </body>
 </body>
</global>

FUN3D Training Workshop
April 27-29, 2010 32

http://fun3d.larc.nasa.gov

 moving_body.input File
•  For rotorcraft, need only define blades as moving bodies and set the initial

XML file; actual motion info comes from rotor.input and motion.txt

&body_definitions
 n_moving_bodies = 4, ! 4 blades
 body_name(1) = 'rotor1_blade1', ! name is set by *dci_gen* - must use unaltered
 n_defining_bndry(1) = 1, ! number of boundaries that define this blade
 defining_bndry(1,1) = 2, ! index 1: boundry number index 2: body number
 mesh_movement(1) = 'deform', ! blades are elastic
 body_name(2) = 'rotor1_blade2',
 n_defining_bndry(2) = 1,
 defining_bndry(1,2) = 4,
 mesh_movement(2) = 'deform',
 body_name(3) = 'rotor1_blade3',
 n_defining_bndry(3) = 1,
 defining_bndry(1,3) = 6,
 mesh_movement(3) = 'deform',
 body_name(4) = 'rotor1_blade4',
 n_defining_bndry(4) = 1,
 defining_bndry(1,4) = 8,
 mesh_movement(4) = 'deform',
/ ! NOTE: motion_driver() should NOT be specified
&composite_overset_mesh
 input_xml_file = 'Input.xml_0' ! use file generated by dci_gen
/

FUN3D Training Workshop
April 27-29, 2010 33

http://fun3d.larc.nasa.gov

 rotor.input File
•  Articulated rotors need only a subset of the data (website defines variables)

 # Rotors Uinf/Uref Write Soln Force Ref Momment Ref ! Below we set Uref = Utip
 1 0.245 1500 1.0 1.0 ! Adv Ratio = Uinf/Utip
=== Main Rotor === ! So here Uinf/Uref = AR
Rotor Type Load Type # Radial # Normal Tip Weight
 1 1 50 180 0.0
 X0_rotor Y0_rotor Z0_rotor phi1 phi2 phi3
 0.0 0.0 0.0 0.00 0.0 0.00
 Utip/Uref ThrustCoff PowerCoff psi0 PitchHinge DirRot
 1.0 0.0064 -1.00 0.0 0.0466 0
 # Blades TipRadius RootRadius BladeChord FlapHinge LagHinge
 4 26.8330 2.6666 1.741 0.0466 0.0466
 LiftSlope alpha, L=0 cd0 cd1 cd2
 6.28 0.00 0.002 0.00 0.00
 CL_max CL_min CD_max CD_min Swirl
 1.50 -1.50 1.50 -1.50 0
 Theta0 ThetaTwist Theta1s Theta1c Pitch-Flap
 0.0 0.00 0.0 0.0 0.00
 # FlapHar Beta0 Beta1s Beta1c
 0 0.0 0.0 0.0
 Beta2s Beta2c Beta3s Beta3c
 0.0 0.0 0.0 0.0
 # LagHar Delta0 Delta1s Delta1c
 0 0.0 0.0 0.0
 Delta2s Delta2c Delta3s Delta3c
 0.0 0.0 0.0 0.0

FUN3D Training Workshop
April 27-29, 2010 34

Key:
Required for rigid and elastic
Required for untrimmed rigid
Unused (must have a value)

http://fun3d.larc.nasa.gov

•  Typically define the flow reference state for rotors based on the tip
speed; thus in rotor.input, set Utip/Uref = 1.0 (data line 4)

•  This way, Uinf/Uref (data line 1) is equivalent to Uinf/Utip, which is the
Advance Ratio, and is usually specified or easily obtained

•  Since the reference state corresponds to the tip, the mach_number in
the fun3d.nml file should be the tip Mach number, and the
reynolds_number should be the tip Reynolds number

•  Nondimensional rotation rate: not input directly, but it is output to the
screen; you might want to explicitly calculate it up front as a later check:

 (rad/s, the rotor radius)

 and recall (compressible) from yesterday
 so with and taking

 (compressible)

 (incompressible)

 Nondimensional Input (1/2)

FUN3D Training Workshop
April 27-29, 2010 35

€

Ω* =Utip
* /R*

€

aref
* =Uref

* /Mref

€

Ω = Mref (Utip
* /Uref

*) /R

€

Ω =Utip
* /Uref

* /R

KEY
POINT

http://fun3d.larc.nasa.gov

 Nondimensional Input (2/2)
•  Nondimensional time step:

 time for one rev: (s)

 and recall (compressible) from yesterday

 so with we have

 (nondim time / rev)

 For N steps per rotor revolution:

 (compressible)

 (incompressible)

•  Note: the azimuthal change per time step is output to the screen in the
Rotor info section. Make sure this is consistent, to a high degree of
precision (say at least 4 digits), with your choice of N steps per rev –
you want the blade to end up very close to 360 deg. after multiple revs!

•  Formulas above are general, but recall we usually have ref = tip, at
least for compressible flow

FUN3D Training Workshop
April 27-29, 2010 36

€

T* = 2π /Ω* = 2π R* /Utip
*

€

T = aref
* (R /R*)2π R* /Utip

* = 2π R /(MrefUtip
* /Uref

*)

€

Δ t = 2π R /(NMrefUtip
* /Uref

*)

€

Δ t = 2π R /(NUtip
* /Uref

*)

KEY
POINT

http://fun3d.larc.nasa.gov

 Blade Surface “Slicing”
•  Boundary surface (rotor blade) slicing is required for coupled CFD/CSD

simulations; also useful for rigid-blade cases - this is what generates the
data in rotor_1.onerev.txt
$slice_data

 replicate_all_bodies = .true. ! do the following the same on all blades

 output_sectional_forces = .false. ! just lots of data we usually don’t need

 tecplot_slice_output = .false. ! ditto

 slice_x(1) = .true., ! x=const slice – in original blade coords

 nslices = -178, ! no. slices; “-” means give start and delta

 slice_location(1) = 2.8175, ! x-location to slice (starting slice)

 slice_increment = .13416666666 ! delta slice location each successive slice

 n_bndrys_to_slice(1) = 1, ! 1 bndry to search

 bndrys_to_slice(1,1) = 2, ! indicies:(slice,bdry) lumping made life easy

 slice_frame(1) = 'rotor1_blade1', ! ref. frame in which to slice - use body name

 te_def(1) = 20, ! look for 2 corners in 20 aft-most segments

 le_def(1) = 30, ! search 30 fwd-most pts for one most distant from TE

 chord_dir(1) = -1, ! Recall goofy original blade coord system

/
•  Note: “slicing” useful for applications other than rotorcraft; see website

FUN3D Training Workshop
April 27-29, 2010 37

http://fun3d.larc.nasa.gov

 CAMRAD Considerations
•  User must set up basic CAMRAD II scripts; the RUN_LOOSE_COUPLING

script provided with FUN3D requires 3 distinct, but related CAMRAD scripts
–  basename_ref.scr

•  Used to generate the reference motion data used by CAMRAD
•  Set this file to use rigid blades; zero collective/cyclic; no trim

–  basename_0.scr
•  Used for coupling/trim cycle “0”
•  Set up for elastic blades with trim; use CAMRAD aerodynamics

exclusively (no delta airloads input); simplest aero model will suffice
–  basename_n.scr

•  Used for all subsequent coupling/trim cycles
•  Set up for elastic blades with trim; use same simple CAMRAD

aerodynamics but now with delta airloads input
•  Sample scripts (basename: hart) are provided in utils/Rotorcraft;

1st 2-4 executable lines of each script show tailoring required to use with
RUN_LOOSE_COUPLING script

FUN3D Training Workshop
April 27-29, 2010 38

http://fun3d.larc.nasa.gov

 Untrimmed Rigid-Blade Simulations
•  Overview of the basic steps

1. Prepare rotor blade and fuselage grids, with proper axis orientation

2. Set up the rotor.input file based on desired flight conditions

3. Run the dci_gen utility to create a composite mesh and initial dci data

4. Set up fun3d.nml and moving_body.input files

5. Optionally set up the &slice_data namelist in the fun3d.nml file

6. Run the solver with the following command line options (in addition to
any other appropriate ones, like --temporal_err_control)
 --moving_grid --overset --overset_rotor --dci_on_the_fly

--dci_period 360 --reuse_existing_dci

 If optional step 5 is used, add the following (N as desired, typically 1)
 --slice_freq N --output_comprehensive_loads

7. Number of time steps required is case dependent – usually at least 3
revs

FUN3D Training Workshop
April 27-29, 2010 39

http://fun3d.larc.nasa.gov

 Trimmed, Elastic-Blade Simulations
•  Overview of the basic steps; steps 1-4 are the same as for the untrimmed

rigid-blade case; use of CAMRAD is assumed
5. Set up the &slice_data namelist; not optional
6. Set up the 3 CAMRAD run script templates
7. Set up the RUN_LOOSE_COUPLING run script (a c-shell script geared to

PBS environments); user-set data is near the top – sections 1 and 2
8. Set up the fun3d.nml_initial and fun3d.nml_restart files

used by the run script; typically set the time steps in the initial file to
cover 2 revs, and 2/Nblade revs in restart version

9.  If using the run script make sure all items it needs are in place; script
checks for missing items, but it gets old having to keep restarting
because you forgot something!

10. Number of coupling cycles required for trim can vary, but 8-10 is typical
for low-moderate thrust levels; high thrust cases near thrust boundary
may require 10-15; user judges acceptable convergence

FUN3D Training Workshop
April 27-29, 2010 40

http://fun3d.larc.nasa.gov

 RUN_LOOSE_COUPLING Directory Tree

FUN3D Training Workshop
April 27-29, 2010 41

Run Directory
Script executed here

FUN3D runs here

CAMRAD

Reference

Trim_0

Trim_1

Trim_0

Trim_1

Principal
solver files

archived here
at end of

each trim cycle

CAMRAD
and interface

codes run
here and

output stored
here for each

trim cycle
.
.
.

.

.

.

Script creates
all subdirectories

http://fun3d.larc.nasa.gov

 Things To Look For In Screen Output (1/2)
•  Rotor info section lists some basic data:

Rotor info, rotor 1
 Number of blades : 4
 Nondimensional rotation rate : 0.02493199
 Azimuth change (deg) per time step : 1.00000000 ! make sure its accurate
 Tip Mach number (hover) : 0.66900000
 Advance ratio : 0.24500000
 Tip radius : 26.83300000
 Force/Moment reference area : 2261.97777779
 Force/Moment reference length : 26.83300000
 Moment reference x-center : 0.00000000
 Moment reference y-center : 0.00000000
 Moment reference z-center : 0.00000000
 Note: force/moment reference data above
 supercedes any other input values

•  If running elastic blades:
 Reading CAMRAD motion file for rotor 1: camrad_motion_data_rotor_1.dat
 nspan = 100
 npsi = 24
 Enforcing periodicity in CAMRAD motion data

•  Note: camrad_motion_data_rotor_1.dat is what FUN3D calls motion.txt
FUN3D Training Workshop

April 27-29, 2010 42

http://fun3d.larc.nasa.gov

 Things To Look For In Screen Output (2/2)
•  Running average of integrated blade loads at the end of each time step:

 Rotor Forces and Moments, Rotor 1
 Averages over 180 steps
 Inertial Axes
 Cx : -0.000124
 Cy : -0.000328
 Cz : 0.009951
 Cmx : 0.000013
 Cmy : -0.000049
 Cmz : -0.000663
 Nonrotating Shaft Axes
 Cx : -0.000124
 Cy : -0.000328
 Cz : 0.009951
 Cmx : 0.000013
 Cmy : -0.000049
 Cmz : -0.000663
 Wind Axes
 Cl : 0.009949
 Cd : -0.000212
 Performance Parameters
 Thrust, Ct : 0.009951
 Torque, Cq : 0.000663

FUN3D Training Workshop
April 27-29, 2010 43

http://fun3d.larc.nasa.gov

 Postprocessing (1/2)
•  For elastic blades, or rigid blade cases with optional “slicing” and
--output_comprehensive_loads, the following files are output;

– rotor_1.onerev.txt (OVERFLOW standard, airloads F/M data)

– motion_rotor_1.onerev.txt (similar to above, but motion data)

•  Utility code process_rotor_data.f90, with input file
process_rotor_data.input (code and sample input in utils/Rotorcraft)

– Extracts aero and displacement data into a number of Tecplot files:
•  airloads_polarplot_rotor_1.dat
•  sectional_forces_vs_azimuth_rotor_1.dat
•  sectional_forces_vs_radius_rotor_1.dat
•  computed_qc_position_vs_azimuth_rotor_1.dat (section c/4 positions
•  computed_qc_position_vs_radius_rotor_1.dat and section pitch)
•  mean_sectional_forces_vs_radius_rotor_1.dat

– “forces” and “polarplot” have M2CN, M2CM, and M2Cx data
– The first three files also have equivalent “mean removed” versions

FUN3D Training Workshop
April 27-29, 2010 44

http://fun3d.larc.nasa.gov

 Postprocessing (2/2)

FUN3D Training Workshop
April 27-29, 2010 45

Sample Plots Possible Via
process_rotor_airloads.f90

Output

http://fun3d.larc.nasa.gov

List of Key Input/Output Files
•  Beyond basics like fun3d.nml, [project]_hist.tec, etc.:
•  Input

–  moving_body.input
–  Input.xml_0 (dynamic overset; no standard name)
–  [project].dci (all overset)
–  rotor.input (all R/C)
–  camrad_motion_rotor_N.dat (aka motion.txt, coupled R/C)
–  case_ref.scr, case_0.scr, case_N.scr (coupled R/C)

•  Output
–  rotor_1.onerev.txt (articulated R/C)
–  motion_rotor_1.onerev.txt (articulated R/C)

FUN3D Training Workshop
April 27-29, 2010 46

http://fun3d.larc.nasa.gov

FAQ’s
•  How long does it take (esp. as regards to coupled rotorcraft

simulations)?
–  If you have to ask you can’t afford it !
–  Currently (April 2010), a 7 million node UH-60 simulation, which

required 10 coupling cycles to converge to trim targets, takes
approximately 72 hrs on 96(+1) processors of a 3.0 GHz P4 Dual
Core 4GB GigE cluster - same cluster used in interactive sessions

–  Expect future speedup from implementation of parallel
SUGGAR++ processing

FUN3D Training Workshop
April 27-29, 2010 47

http://fun3d.larc.nasa.gov

What We Learned
•  How to set up and run static and dynamic overset meshes in FUN3D

–  To fully utilize, requires knowledge of SUGGAR++, for which
training will be provided tomorrow

•  Rotorcraft simulations
–  Actuator disk models for basic influence of rotor
–  Moving, articulated blades for detailed airloads analysis - much

more expensive and involved
•  Assemble the composite grid with dci_gen; takes most of the

work out of setting up the SUGGAR++ XML file, using an input
file you later need for FUN3D

•  Rigid blades (untrimmed) can be run without coupling to a
comprehensive code

•  Coupled FUN3D / CAMRAD solutions a huge step up in
complexity!

FUN3D Training Workshop
April 27-29, 2010 48

